
50 The Delphi Magazine Issue 41

Beating the System:
Animated Icons And Cursors, 1
by Dave Jewell

Many moons ago (Issue 22 to
be precise) I described the

internal anatomy of an icon file.
This month I’ll describe the format
of the animated cursor files (.ANI)
which Microsoft first introduced in
Windows NT. Animated cursors
are now supported under NT,
Windows 95 and 98, and (this
month and next) I’ll be presenting
code which allows you to
programmatically implement ani-
mated cursors in Delphi, and
allows you to display the anima-
tions in fixed locations on a form.
Moreover, the implementation
described here will stream the ani-
mation data into the form file, thus
eliminating the need to deploy
extra files or load special resource
data at runtime [A special round of
applause seems appropriate here!
Ed].

Anatomy Of An ANI File
An ANI file is a variation of
Microsoft’s so-called RIFF file
format as used for various different
types of multimedia files. If you
want to get the definitive specifica-
tion for RIFF and ANI files, you’ll
find there are several relevant
documents at www.wotsit.org/, a
website which is devoted
specifically to accumulating and
disseminating file format
information.

The RIFF file format is ‘chunk’
based. A chunk begins with a four
byte signature which identifies the
type of the chunk. This is then fol-
lowed by a 32-bit length specifier
which indicates how much data is
contained in the chunk, and this is
then followed by the chunk data
itself. Just to make things a little
more interesting, chunks can con-
tain ‘sub-chunks’ and, in the case of
animated icon files, some chunks
are optional.

The actual image data within an
ANI file is stored as a series of

icons. In fact, the data is stored in
exactly the same format as if the
various icons were individual .ICO
files. If you look back to my article
on .ICO files (Issue 22), you’ll see
that the icon data begins with a
six-byte header that doesn’t do
much besides identify the number
of icons in a file. In case you don’t
have that issue (or your Collection
‘98 CD-ROM) to hand, this data
structure is reproduced below:

TIconHeader = packed record
AlwaysZero : Word;
CursorType : Word;
NumIcons : Word;

end;

This is then followed by a sixteen
byte header that contains more
important information, such as the
width and height of the icon, the
number of colours in the icon and
so forth:

TIconDirEntry = packed record
Width, Height, Colors: Byte;
Reserved: Byte;
dwReserved: LongInt;
dwBytesInRes: LongInt;
dwImageOffset: LongInt;

end;

This second header is then fol-
lowed by the icon data itself. I’ve
seen some shareware implementa-
tions of animated icon compo-
nents which make the assumption
that an animated icon is only ever
going to contain sixteen colour
images. However, this isn’t a valid
assumption. If you’re running a
recent implementation of Win-
dows such as Windows 98 [Oh,
sorry Dave, I thought you said
decent for a moment there... Ed],
you’ll probably find that there’s a -
CURSORS directory hanging off
your main WINDOWS directory. If
you look in there, you’ll find an
assortment of ANI files, some of

which (eg S_BUSY.ANI) contain full
256 colour images. My code tries
not to make any assumptions
about the size of embedded icon
files.

As you’ll no doubt appreciate,
each embedded icon represents a
single ‘frame’ of the movie. By dis-
playing these frames one after
another, the animation effect is
achieved. Aside from the image
data itself, the most important
sub-chunk in the ANI file is the anih
sub-chunk. This contains the
TAniIconHeader data structure
shown near the top of Listing 1.

In the usual way, the first field,
dwSizeof, contains the total size of
the data structure in bytes and is
there to provide backwards com-
patibility in case Microsoft ever
change this data structure. They
probably wouldn’t need to,
because most of the fields in
TAniIconHeader are already
reserved for future use and will be
found to contain zero in the file on
the disk. This includes dwCX, dwCY,
dwBitCount and dwPlanes. The
dwFrames field stores the total
number of frames in the movie, the
number of distinct icon images
stored within the ANI file. The
dwSteps field, on the other hand,
stores the number of discrete
‘steps’ within the animation.

Playing The Animation
In the simplest possible case, you
might have an animation of (say)
ten frames and exactly ten steps.
The first step will therefore display
the first icon, the second step will
show the next icon and so on. Each
step of the animation should be
displayed for an amount of time
defined by the dwJIFRate field in
the TAniIconHeader structure. This
value is given in 60th parts of a

➤ Facing page: Listing 1

January 1999 The Delphi Magazine 51

unit UCAniIcon;
interface
uses
Windows, SysUtils, Consts, Classes, Graphics;

type
TAniIconHeader = record
dwSizeof: LongInt;
dwFrames: LongInt;
dwSteps: LongInt;
dwCX: LongInt; { use this to store icon width }
dwCY: LongInt; { use this to store icon height }
dwBitCount: LongInt;
dwPlanes: LongInt;
dwJIFRate: LongInt;
dwFlags: LongInt;

end;
TAniIcon = class (TGraphic)
private
Rates: TList; { Optional JIFRate info for each step }
FrameOffsets: TList; { Stream offsets into each frame }
SequenceMap: TList; { Optional frame sequence mapping }
Image: TMemoryStream; { Memory Image of .ANI file }
fAuthor: String; { Optional author information }
fTitle: String; { Optional title information }
fHeader: TAniIconHeader; { ANI header extracted from file }
fCurrentJIFs: Integer; { current JIF count for this step }
fCurrentStep: Integer; { current step number }
fCurrentFrame: Integer; { currently displaying frame number }
fCurrentIcon: hIcon; { currently displaying icon }
fTransparent: Boolean; { for transparent blitting }
fBackColor: TColor; { background color when not transparent }
procedure Clear;
procedure SetFrame (Index: Integer);

public
constructor Create; override;
destructor Destroy; override;
procedure Assign (Source: TPersistent); override;
procedure LoadFromStream (Stream: TStream); override;
procedure SaveToStream (Stream: TStream); override;
procedure Animate;
procedure LoadFromClipboardFormat (AFormat: Word; AData:
THandle; APalette: HPalette); override;

procedure SaveToClipboardFormat (var Format: Word;
var Data: THandle; var APalette: HPalette); override;

procedure Draw (ACanvas: TCanvas; const Rect: TRect);
override;

property Author: String read fAuthor;
property Title: String read fTitle;
property Icon: hIcon read fCurrentIcon;
property Transparent: Boolean read fTransparent
write fTransparent default False;

property BackgroundColor: TColor read fBackColor
write fBackColor default clBtnFace;

protected
function GetEmpty: Boolean; override;
function GetHeight: Integer; override;
function GetWidth: Integer; override;
procedure SetHeight (Value: Integer); override;
procedure SetWidth (Value: Integer); override;

end;
implementation
constructor TAniIcon.Create;
begin
Inherited Create;
fTransparent := False;
fBackColor := clBtnFace;
Rates := TList.Create;
FrameOffsets := TList.Create;
SequenceMap := TList.Create;
Image := TMemoryStream.Create;

end;
destructor TAniIcon.Destroy;
begin
Clear;
Image.Free;
Rates.Free;
FrameOffsets.Free;
SequenceMap.Free;
Inherited Destroy;

end;
procedure TAniIcon.Clear;
begin
fAuthor := '--unavailable--';
fTitle := '--unavailable--';
Image.Clear;
Rates.Clear;
FrameOffsets.Clear;
SequenceMap.Clear;
if fCurrentIcon <> 0 then DestroyIcon (fCurrentIcon);
fCurrentIcon := 0;

end;
procedure TAniIcon.Assign (Source: TPersistent);
begin
if Source = Nil then
Clear

else if Source is TAniIcon then
LoadFromStream(TAniIcon(Source).Image)

else
Inherited Assign (Source);

end;

{ ** SOME CODE OMITTED HERE: SEE DISK FOR FULL LISTING ** }
procedure TAniIcon.LoadFromStream (Stream: TStream);
const
sig_RIFF = $46464952; { RIFF header }
sig_ACON = $4E4F4341; { ACON form type }
sig_LIST = $5453494C; { LIST sub-chunk }
sig_INFO = $4F464E49; { INFO sub-chunk }
sig_INAM = $4D414E49; { INAM - title information }
sig_IART = $54524149; { IART - author information }
sig_anih = $68696E61; { anih - header information }
sig_rate = $65746172; { optional JIF rates sub-chunk }
sig_fram = $6D617266; { fram - list of icon frames }
sig_icon = $6E6F6369; { icon - start of actual frame }
sig_seq = $20716573; { seq - opt sequence information }

var
ChunkLen: LongInt;
EncounteredHeader: Boolean;
procedure InvalidFile;
begin
raise EInvalidGraphic.Create(
'Animated icon image is not valid');

end;
function ReadByte: Byte;
begin
Image.ReadBuffer (Result, sizeof (Result));

end;
function ReadLong: LongInt;
begin
Image.ReadBuffer (Result, sizeof (Result));

end;
function ReadString: String;
var
p: PChar;
Len: LongInt;

begin
Len := ReadLong;
if (Len and 1) <> 0 then
Inc (Len);

GetMem (p, Len + 1);
p[Len] := #0;
Image.ReadBuffer (p^, Len);
Result := StrPas (p);
FreeMem (p, Len + 1);

end;
{ Process an optional info header sub-chunk.
Contains Title/Author }

procedure ParseTitleAuthor;
var ChunkEnd: LongInt;
begin
ChunkEnd := ReadLong;
Inc(ChunkEnd, Image.Position);
if ReadLong <> sig_INFO then
InvalidFile;

while Image.Position < ChunkEnd do
case ReadLong of

sig_INAM : fTitle := ReadString;
sig_IART : fAuthor := ReadString;

end;
end;
{ Parse ANI header information }
procedure ParseAniHeader;
begin
if ReadLong <> sizeof (fHeader) then
InvalidFile;

Image.ReadBuffer (fHeader, sizeof (fHeader));
EncounteredHeader := True;

end;
{ Parse optional JIFRates chunk OR }
{ optional Sequence Map }
procedure ParseList (List: TList);
var Len: LongInt;
begin
Len := ReadLong div sizeof (LongInt);
if Len <> fHeader.dwSteps then
InvalidFile;

while Len > 0 do begin
List.Add (Pointer (ReadLong));
Dec (Len);

end;
end;
{ Parse the actual icon data itself }
procedure ParseIconList;
var
Idx: Integer;
Len, Next: LongInt;

begin
ReadLong; { Discard chunk length }
if ReadLong <> sig_fram then
InvalidFile;

{ Store frame offsets for later consumption }
for Idx := 0 to fHeader.dwFrames - 1 do begin
if ReadLong <> sig_icon then
InvalidFile;

{ Save position from beginning of length dword }
FrameOffsets.Add(Pointer (Image.Position));
{ Read Length of this frame }
Len := ReadLong;
Next := Len + Image.Position;

{ ** CONTINUED ON FOLLOWING PAGE... ** }

52 The Delphi Magazine Issue 41

second. Thus, if dwJIFRatehappens
to be 3, then we know that the ani-
mation should ‘step’ twenty times
per second.

That’s the simplest case, but
things can be more complex than
this. For starters, there’s an
optional rate sub-chunk which
specifies the length of time that
each step of the animation ought to
be displayed. Thus, rather than
having each step last for the same
amount of time, you can create ani-
mations where the same frame per-
sists for a long time, and then a lot
of action takes place very quickly.
The rate sub-chunk is encoded
simply as a list of 32-bit values, one
for each step in the animation. If
this sub-chunk isn’t present, then
the dwJIFRate field of the header is
used throughout.

In a similar way, the size of an
ANI file can be substantially
reduced by re-using the same
frame at different points in an ani-
mation. Almost all animations will
make use of this feature, since very
many cursor animations display a
‘to and fro’ characteristic: a com-
plete animation cycle consisting of
the action moving in one direction
and then moving in the other, back
to the starting point. It should be
obvious that if we had to store a
new icon for each frame we’d end
up with many frames being dupli-
cated within the file. The optional
seq sub-chunk eliminates this
problem by specifying the order in
which frames are shown: it pro-
vides a mapping from a particular
step to the frame which needs to be
displayed during that step. As
before, this chunk consists of a
series of 32-bit integer values, one
for each step in the animation.
Each value within the array is an
index into the list of icon images.

Introducing TAniIcon
In order to most easily work with
animated icons, and incorporate
animated icon capabilities into
other components, I decided to
write a new class, TAniIcon, which
derives from the abstract class
TGraphic. If you’re well up on the
VCL design philosophy, you’ll
know that this is the correct class
to derive from when implementing

a new graphic file format,
it’s used for TIcon,
TMetaFile, TBitmap and so
forth.

Nearly all the code for
TAniIcon is given in List-
ing 1 (and is of course in
full on this month’s
disk). Amongst other things, this
class implements all the methods
that are defined as being abstract
in the TGraphic class. If you’ve ever
derived from an abstract class
before, and you then write code
which creates a new instance of the
derived class, you’ll know that the
compiler will keep whingeing at
you until it’s happy that all the
abstract methods have been
replaced with real code!

Unlike some other implementa-
tions that I’ve seen, TAniIcon does
not create all the necessary
API-level icons for the animation at
the same time. In other words, if
you’ve got (for instance) an anima-
tion of ten, twenty or even forty dif-
ferent icons, some animated icon
implementations create all those
different icon handles together and
store them as a handle array within
the class. I didn’t go down this
route because I considered it to be
a terrible waste of GDI system
resources. Instead, each icon is
created on the fly as required and
then disposed of when it is no
longer needed. Modern hardware
is perfectly capable of providing
the necessary horsepower to do
this while still giving a smooth
animation effect.

When a new ANI file is opened,
the code loads the entire file into a
TMemoryStream object and stores it
there for later use, revisiting the
contents of the stream whenever a
new icon needs to be created. This
is an approach that has minimal
runtime overhead (even the larg-
est ANI files on my machine are a
mere 30Kb) and gives us a big

pay-off when it’s time to send the
file data somewhere else, such as
might be required through a call to
Assign or SaveToStream. If we didn’t
have all the file data to hand, then
we would have to painfully recon-
struct the ANI file image on a
byte-by-byte basis which would
add very considerably to the
complexity of the code.

As you’ll see from the code list-
ing, the Image field is used to store
an image of the file data. The
FrameOffsets field is used to main-
tain a list of 32-bit offsets into the
image data, each offset represent-
ing the start of a particular frame.
This list is constructed at the time
the data is first parsed. As I men-
tioned earlier, the rate and seq
sub-chunks are optional; these
correspond to the Rates and
SequenceMap fields within the
TAniIcon class. If the correspond-
ing information isn’t present in the
image data, then these lists will be
empty. The private fAuthor and
fTitle fields correspond to an
optional info block stored within
the file, as we shall see.

If you’re not familiar with the
TGraphic class, it’s worth pointing
out that there’s no need to directly
implement LoadFromFile and
SaveToFile methods in TAniIcon.
These methods are already imple-
mented in TGraphic, and they
simply call down to the abstract
LoadFromStream and SaveToStream
abstract methods which we do
have to implement. From this, and
bearing in mind my previous com-
ments about storing the entire file
image in memory, you should

➤ Figure 1:
MicroAngelo is the
definitive editor for
creating and editing
ANI files. Visit
www.impactsoft.com
for the latest version.

January 1999 The Delphi Magazine 53

readily appreciate that the only
non-trivial routine in the entire
class is going to be the
LoadFromStream method. It’s this
routine which is really the heart of
the entire unit, it’s here that the
incoming stream is parsed and all
the important data structures are
initialised. The code begins by call-
ing the Clear method to remove
any traces of the existing anima-
tion. This re-initialises all lists and
(if present) destroys the current
API-level icon handle correspond-
ing to the current frame. Next, the
entire file image is read into the
TMemoryStream object.

As ever, Microsoft have added a
few little ‘gotchas’ to the ANI file

format, and the first of these is the
possible presence of two different
INFO sub-chunks within the file.
The actual image data is contained
within one INFO chunk, and the
presence of this chunk type is obvi-
ously mandatory: no image data,
no comment! However, the other
INFO chunk is optional: it only con-
tains title and author information
which, for the sake of complete-
ness, I decided to expose as public
properties of the class. If the
optional chunk isn’t present both
these property strings are initial-
ised to —unavailable—).

This raises the question of how
to distinguish the two INFO chunk
types? Fortunately, it turns out
that the image data will only ever
appear after the mandatory anih

chunk whereas the author/title
data will only ever appear before
anih. Thus, we can easily discrimi-
nate between the two simply by
noting whether or not we’ve
parsed the anih chunk yet. Purists
and frustrated compiler writers(!)
may prefer to implement a state
machine, look-ahead facility, or
whatever, but there’s really noth-
ing to be gained from such an
approach in this case.

The initial four-byte file signa-
ture (RIFF) should immediately be
followed by a 32-bit value which
specifies the size of the remainder
of the file. Thus, conceptually, the
RIFF chunk is the outermost,
global, chunk. Another gotcha I
discovered here was that some
Microsoft-authored ANI files

{ Dig a little deeper to get the icon size info }
if Idx = 0 then begin
Image.Position := Image.Position + 6;
fHeader.dwCX := ReadByte;
fHeader.dwCY := ReadByte;

end;
Image.Position := Next;

end;
end;

begin { LoadFromStream }
Clear;
Image.LoadFromStream (Stream);
EncounteredHeader := False;
{ Validate initial eight-byte header. Some .ANI files have
filesize > header (eg appstart.ani) }

if (ReadLong <> sig_RIFF) or (ReadLong > Image.Size) then
InvalidFile;

{ Next item must be an ACON chunk }
if ReadLong <> sig_ACON then
InvalidFile;

while Image.Position < Image.Size do
{ Case out on the sub-chunk we find }
case ReadLong of
sig_LIST : if not EncounteredHeader then
ParseTitleAuthor else ParseIconList;

sig_anih : ParseAniHeader;
sig_rate : ParseList (Rates);
sig_seq : ParseList (SequenceMap);

else begin
{ Unknown chunk - just skip it }
ChunkLen := ReadLong;
Image.Position := Image.Position + ChunkLen;

end;
end;
SetFrame (0);

end;
procedure TAniIcon.SaveToStream (Stream: TStream);
begin
if GetEmpty then
raise EInvalidGraphicOperation.Create(sInvalidImage);

with Image do
Stream.WriteBuffer (Memory^, Size);

end;
procedure TAniIcon.Draw(
ACanvas: TCanvas; const Rect: TRect);

var bm: TBitmap;
begin
if fCurrentIcon <> 0 then begin
if not fTransparent then begin
bm := TBitmap.Create;
bm.Width := fHeader.dwCX;
bm.Height := fHeader.dwCY;
bm.Canvas.Brush.Color := fBackColor;
bm.Canvas.FillRect(
Classes.Rect (0, 0, bm.Width, bm.Height));

DrawIcon(bm.Canvas.Handle, 0, 0, fCurrentIcon);
ACanvas.Draw(Rect.Left, Rect.Top, bm);
bm.Free;

end else
DrawIcon(ACanvas.Handle, Rect.Left, Rect.Top,
fCurrentIcon);

end;
end;

procedure TAniIcon.SetFrame(Index: Integer);
type
TIconHeader = packed record
AlwaysZero: Word;
CursorType: Word;
NumIcons: Word;

end;
TIconDirEntry = packed record
Width, Height, Colors: Byte;
Reserved: Byte;
dwReserved: LongInt;
dwBytesInRes: LongInt;
dwImageOffset: LongInt;

end;
var
p: PByte;
ChunkLen: LongInt;
IconHeader: TIconHeader;

begin
if (FrameOffsets.Count <> 0)
and (Index < fHeader.dwFrames) then begin
fCurrentFrame := Index;
if fCurrentIcon <> 0 then // Delete any existing icon
DestroyIcon (fCurrentIcon);

// Seek to wanted position in stream data
Image.Position := Integer (FrameOffsets [Index]);
Image.ReadBuffer (ChunkLen, sizeof (ChunkLen));
Image.ReadBuffer (IconHeader, sizeof (IconHeader));
Image.Position := Image.Position +
(sizeof(TIconDirEntry)*IconHeader.NumIcons);

Dec(ChunkLen, sizeof(IconHeader) +
(sizeof (TIconDirEntry) * IconHeader.NumIcons));

p := Image.Memory;
Inc(p, Image.Position);
fCurrentIcon :=
CreateIconFromResource(p, ChunkLen, True, $30000);

Changed (Self);
end;

end;
procedure TAniIcon.Animate;
var JifRate, NextFrame: Integer;
begin
if Rates.Count = 0 then
JifRate := fHeader.dwJIFRate

else
JifRate := Integer (Rates [fCurrentStep]);

Inc (fCurrentJIFs, 4);
if fCurrentJIFs >= JifRate then begin
{ Time to move on to next step }
fCurrentJIFs := 0;
Inc (fCurrentStep);
if fCurrentStep >= fHeader.dwSteps then
fCurrentStep := 0;

if SequenceMap.Count = 0 then
NextFrame := fCurrentFrame + 1

else
NextFrame := Integer (SequenceMap [fCurrentStep]);

if NextFrame >= fHeader.dwFrames then
NextFrame := 0;

if NextFrame <> fCurrentFrame then
SetFrame (NextFrame);

end;
end;
end.

➤ Listing 1, continued

54 The Delphi Magazine Issue 41

contain extraneous data which fol-
lows the RIFF chunk. To put it
another way, some ANI files appear
to be longer than they should be.
Fortunately, this is easy to address
in validation checks that I perform.

The code then simply loops
round, reading successive chunks,
until the end of the Image stream is
reached. The Microsoft documen-
tation is vague about the order in
which certain chunks appear, and
I’ve therefore tried to make the
code as ‘context-free’ as possible.
Chunk types which aren’t recog-
nised by the scanner are simply
skipped over. If any validation
code fails, then a show-stopping
EInvalidGraphic exception is
raised.

The anih chunk fills in the
fHeader data structure with the
important file information that I
discussed earlier when explaining
the TAniIconHeader structure.
Later, when the actual image data
is being parsed, the ParseIconList
routine checks to see if the image
entry being parsed is the first
entry. If so, it digs a little deeper
into the stream data and extracts
the width and height image infor-
mation for the icon. These values
are then stored into the dwCX and
dwCY fields of the header, saving a
couple of bytes of memory. I once
earned a living programming
games for Apple II computers fitted
with 4Kb RAM and old habits die
hard! Finally, the LoadFromStream
method finishes by calling SetFrame
with an argument of zero, which
creates an API-level icon handle for
the first frame in the animation.

Creating The Icon
The SetFrame code ensures the
passed frame number is valid and
then deletes any existing icon

handle. Next, it seeks to
the relevant position in
the stream data and

reads in the length of the
sub-chunk. The 32-bit length field
is immediately followed by a
TIconHeader data structure. For
some reason which I don’t fully
understand, some ANI files contain
multiple icons within each frame,
and this situation has to be
addressed by examining the
NumIcons field of the TIconHeader.
There’s one TIconDirEntry in the
data stream for each icon present,
and the code uses the NumIcons
count to skip ahead to the start of
the image data proper. So far, I
haven’t found an ANI file which
breaks this code, but if you wanted
to add a little more validation code
here, you could check that the next
32-bit long-word in the data stream
(after skipping the various head-
ers) is equal to $28. Referring back
to my article in Issue 22, this corre-
sponds to the size of the
TBitmapInfoHeader data structure.

Rather than allocating a buffer
and reading all the image data into
the buffer prior to creating the
bitmap, we can just use the Memory
property of the Image stream to
directly retrieve a pointer to the
data (at least I knew about that
property!J – see A Slice of Humble
Pie). Having got a pointer to
the TBitmap InfoHeader data
and the following image
information, we call the
routine CreateIconFrom
Resource to create an actual
icon handle.

If you’re feeling adventurous,
you might like to modify my code
so that it uses the CreateIconFrom
ResourceEx routine. The advantage
of this is that it will enable you to
create animations which are larger
(in terms of width and height) than
the icon data contained within the
ANI file. This is done by internally
stretching the bitmap information
to the specified dimensions. By
adopting such a strategy, you
could provide a more complete
implementation of the SetWidth
and SetHeight methods, maintain-
ing internal variables which indi-
cate the desired size of the
animation, and then using them
when it’s time to actually create
the icon handle. I haven’t gone
down this route myself because
I’m not a great fan of stretched
bitmaps, but if you want to do it,
the necessary code changes are
relatively trivial.

One Jiffy = Three Shakes
Of A Dead Lamb’s Tail...
There are only two other routines
in the TAniIcon class which are
worthy of mention. Firstly, the Ani-
matemethod. This method must be
called periodically by whatever
code has created the TAniIcon
object in order to ‘drive’ the
animation. Each time it’s called, it
bumps the jiffy count that pertains
to the currently displayed frame.
When this count exceeds the ‘dis-
play time’ that’s specified for this
particular frame, then the anima-
tion moves on to the next step.
This typically involves calling the
SetFrame routine in order to render
the next icon handle. The Animate

➤ Figure 3: The Microsoft
RIFF specification (which
includes notes on the
.ANI file format) can be
downloaded from the
file format repository
at www.wotsit.org

➤ Figure 2:
Windows comes with
a number of
animated icon files
which you can use
with the TAniIcon
class developed here.

January 1999 The Delphi Magazine 55

method should be fairly
self-explanatory, apart from the
odd way in which I’ve incremented
the Jiffy count by 4. This is
explained a little further on.

The Draw method is where we
finally get to draw the current
frame image on a canvas. It should
be obvious that icons are inher-
ently transparent images which
means that, when calling DrawIcon,
the background still ‘shows
through’. This is what we want
when using icons on the taskbar,
on the Windows desktop, or wher-
ever, but it’s a deeply bad idea
when using animated icons
because it means that each frame
will be drawn on top of the
preceeding frame, creating a sort
of unintentional ‘time-lapse’ effect!
In order to address this problem, I
implemented Transparent and
BackgroundColor properties of the
TAniIcon class. By default, the
Transparent property will be False,
which is almost always what we
want. When used in this way, the

Draw method creates a small,
off-screen, icon-sized bitmap,
pre-fills it with the currently

selected background colour and
then draws the current frame on
top of this. The resulting bitmap is
what then gets drawn on the dis-
play canvas. By doing things in this
way, we avoid the unpleasant
flicker effects that would result
from calling FillRect directly on
the display canvas, and then imme-
diately overwriting it with the
current icon image.

The sample program in Listing 2
shows one possible arrangement
for making use of TAniIcon. Here, a
TTimer object is used to drive the
Animate method, calling the Draw
method to blit the current frame
onto the screen at the same time.
As an alternative, you could use
the OnChange event of the TAniIcon
object to redraw the icon only
when the frame has actually
changed.

The source code to both units is,
as ever, included on this month’s
disk, and there is also a ‘packaged’
version of the compiled execut-
able which you will be able to run if
you have the Delphi 3 runtime
packages installed. Bear in mind,
though, that nothing much will
happen if you don’t have the actual
ANI file which the program is
expecting to find.

A Slice Of Humble Pie
There are times when technical journalism can be something of a sweet and
sour experience. The sweet part (as you no doubt suspect) has to do with
being able to get your hands on all manner of programming goodies without
actually having to pay for anything. The sour part, on the other hand, means
that when one screws up, one does so in a very public manner!

A couple of weeks ago, I got an email message from a reader of The Delphi
Magazine, Andrew McLellan (andrew@cix.compulink.co.uk), who gently
pointed out a rather embarrassing oversight in last month’s article on the
system image list. You may remember that I devoted some time to stressing
that you could read the system image list information, but that you weren’t
allowed to change it. In particular, I noted the dangers of ‘wrapping’ a
normal VCL-level TImageList component around the system image list,
explaining that when the TImageList object is destroyed, the system image list
will be destroyed as well, with devastating consequences for the Windows
desktop.

That’s certainly true as far as it goes, but Andrew pointed out that by set-
ting the SharedImages property of the TImageList object to True, the aforemen-
tioned problem could be overcome. The SharedImages property is there
specifically to cater for this sort of situation, and it prevents the underlying
API-level system list from being destroyed when the VCL control is released.
It’s important to set the TImageList property after setting the Handle property
of the control to the system image list. If you set if before, then any
pre-existing image list would not be freed.

I guess the moral of the story is that every VCL component always has at
least one more feature than you think it has! I haven’t done a great deal of
work with image list components (at least, not at the VCL level) and my mind
had never registered the presence of the SharedImagesproperty let alone what
it does. So there you have it, a cigar for Andrew and a large slice of humble pie
for me!

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls,UCAniIcon;

type
TForm1 = class(TForm)
Timer1: TTimer;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Timer1Timer(Sender: TObject);

private
ani: TAniIcon;

public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
ani := TAniIcon.Create;
ani.LoadFromFile ('c:\windows\cursors\s_busy.ani');
ani.BackgroundColor := Self.Color;
Caption := ani.Title;
Timer1.Interval := 50;
Timer1.Enabled := True;

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
ani.Free;

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
ani.Animate;
ani.Draw (Canvas, Rect (0, 0, ani.Width, ani.Height));

end;
end.

➤ Listing 2

56 The Delphi Magazine Issue 41

I mentioned earlier the question
of updating the Jiffy count by 4
each time the Animate method is
called. The author of MicroAngelo
has a lot to say about his software
being the standard by which
others are judged, and I therefore
tried to match the animation speed
of TAniIcon to the animation speed
of the same ANI file in MicroAngelo.
By trial and error, I found that
incrementing the Jiffy count by 4
inside the Animate method and
using a timer interval of 50 millisec-
onds gave a reasonably close
match. This gives a ‘logical Jiffy’
value of one 80th of a second. In
theory, one should be aiming for a
‘logical Jiffy’ value of one 60th of a
second, but in practice this
seemed rather on the slow side. It’s
really a case of ‘how long is a piece
of string?’ or perhaps, how many
shakes of a dead lamb’s tail corre-
spond to a Jiffy? Before leaving the
subject of animation speed, it’s
also important to point out that
WM_TIMER messages are inherently
inaccurate, so it’s therefore better
to go for a relatively long timer
interval (commensurate with a
smooth animation) and compen-
sate for it inside the Animate code
as I’ve done here. This will tend to
iron out minor irregularities in the
WM_TIMER repetition rate.

Next month, I’ll provide a couple
of drop-in Delphi components
which make use of TAniIcon, one
for displaying an animation on a
form, and another for creating an
animated icon in the tray area.
We’ll also look at a property editor
for the TAniIcon class, and I’ll be
showing you how to associate an
animated icon with the mouse
cursor itself. See you then!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level work. He is Technical Editor
of Developers Review which is also
published by iTec. Contact Dave at
Dave@HexManiac.com

	Anatomy Of An ANI File
	Playing The Animation
	Introducing TAniIcon
	Creating The Icon
	One Jiffy = Three Shakes Of A Dead Lamb's Tail...
	A Slice Of Humble Pie

